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The Northern Humboldt Current Ecosystem is one of the most productive in the world in terms of fish
production. Its location near to the equator permits strong upwelling under relatively low winds, thus
creating optimal conditions for the development of plankton communities. These communities ulti-
mately support abundant populations of grazing fish such as the Peruvian anchoveta, Engraulis ringens.
The ecosystem is also subject to strong inter-annual environmental variability associated with the El
Niño Southern Oscillation (ENSO), which has major effects on nutrient structure, primary production,
and higher trophic levels. Here our objective is to model the contributions of several external drivers
(i.e. reconstructed phytoplankton changes, fish immigration, and fishing rate) and internal control mech-
anisms (i.e. predator-prey) to ecosystem dynamics over an ENSO cycle. Steady-state models and time-
series data from the Instituto del Mar del Perú (IMARPE) from 1995 to 2004 provide the base data for sim-
ulations conducted with the program Ecopath with Ecosim. In simulations all three external drivers con-
tribute to ecosystem dynamics. Changes in phytoplankton quantity and composition (i.e. contribution of
diatoms and dino- and silicoflagellates), as affected by upwelling intensity, were important in dynamics
of the El Niño of 1997–98 and the subsequent 3 years. The expansion and immigration of mesopelagic
fish populations during El Niño was important for dynamics in following years. Fishing rate changes were
the most important of the three external drivers tested, helping to explain observed dynamics throughout
the modeled period, and particularly during the post-El Niño period. Internal control settings show a mix
of predator–prey control settings; however a ‘‘wasp-waist” control of the ecosystem by small pelagic fish
is not supported.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Eastern Boundary Current Systems (EBCSs), including the Hum-
boldt, Canary, Benguela, and California Currents, and in particular
their nearshore upwelling zones, are among the most productive
fishing areas in the world. High primary and secondary productiv-
ity support large biomasses of small planktivorous pelagic fish, or
‘‘small pelagics”, which through predator/prey interactions can
influence both higher and lower trophic levels (i.e. ‘‘wasp-waist”
ecosystem control, Cury et al., 2000).

The Humboldt Current, and specifically, the Peruvian upwelling
system, produces more fish landings than the other EBCSs (both to-
ll rights reserved.

: +49 4212380030.
ylor).
tal and on a per area basis). However, remote sensing-based esti-
mates of primary production rank the Peruvian upwelling system
only third, behind the Benguela and Canary Current systems (Carr,
2002). In a way, this apparent paradox supports early fishery
hypotheses that emphasize quantity and quality of upwelling.
The Peruvian upwelling system’s proximity to the equator and
large Rossby radius results in strong and sustained upwelling un-
der relatively mild wind forcing (Cury and Roy, 1989; Bakun,
1996). These conditions create a ‘‘particularly rich, non-turbulent,
benign environment” by which rich coastal plankton communities
develop and persist, in turn supporting abundant populations of
small pelagics (Bakun and Weeks, 2008).

Peru’s proximity to the equator also means that Kelvin waves
traveling eastward along the equator during El Niño (EN) impact
Peru almost directly. During EN, the ‘‘basin-wide ecosystem” of

mailto:marchtaylor@yahoo.com
http://www.sciencedirect.com/science/journal/00796611
http://www.elsevier.com/locate/pocean


M.H. Taylor et al. / Progress in Oceanography 79 (2008) 366–378 367
the Pacific, which normally maintains a slope in sea level, thermal
structure, and nutrient structure due to trade winds, is lost or re-
versed (Chavez et al., 2003; Pennington et al., 2006). While upwell-
ing-favorable wind may continue along the Peruvian coast, water is
upwelled from above the now deep thermocline and nutricline. As
a result, primary production of the Peruvian upwelling system is
reduced, and the ‘‘active zone” of high primary production can be
1/10th the size of normal conditions (Nixon and Thomas, 2001).

Under normal conditions diatoms dominate the nearshore phy-
toplankton community. Diatoms are particularly adapted to
upwelling conditions through high doubling rates and their ability
to form resting spores, which sink and are subsequently returned
to the surface via upwelling (Pitcher et al., 1992). In the Humboldt
Current system, EN reduces the upwelling of nutrient-rich water,
which results in a reduction of the larger size fraction of the phy-
toplankton community (e.g. diatoms) (Bidigare and Ondrusek,
1996; Landry et al., 1996; González et al., 1998; Iriarte and Gon-
zález, 2004) and are replaced by subtropical phytoplankton nor-
mally found further offshore in nutrient poor waters (Rojas de
Mendiola, 1981; Ochoa et al., 1985; Avaria and Muñoz, 1987).
These changes in the phytoplankton produce changes throughout
the ecosystem, with energy likely passing through different path-
ways before reaching a particle size suitable for grazing by small
pelagics (Sommer et al., 2002; González et al., 2004; Iriarte and
González, 2004; Tam et al., 2008).

This straightforward, bottom-up perspective becomes compli-
cated when one considers the effects and interactions of top-down
processes such as predation and fishing. Fortunately, trophic mod-
eling of EBCSs has a long history from which to draw upon; includ-
ing steady-state models of the Peruvian (Walsh, 1981; Baird et al.,
1991; Jarre et al., 1991; Jarre-Teichmann, 1992) and other upwell-
ing systems (Shannon et al., 2003; Heymans et al., 2004; Neira and
Arancibia, 2004; Neira et al., 2004; Moloney et al., 2005). The
development of the program Ecopath with Ecosim (EwE) (Walters
et al., 1997) further allows for temporal explorations of dynamics,
and has been previously applied to the southern Benguela system
(Shannon et al., 2004a,b). A review of these advances (Taylor and
Wolff, 2007) has assisted in the construction of new steady-state
models for the Peruvian system as presented by Tam et al.
(2008), which form the basis for the dynamic simulations pre-
sented here.

Our objectives are to elucidate the mechanisms of ecosystem
dynamics in the Peruvian upwelling system over an ENSO cycle.
We evaluate the importance of three external drivers: (i) changes
in phytoplankton biomass and composition, (ii) immigration of
mesopelagic fish into the model area, and (iii) changes in fishing
rates. We also explore internal predator-prey control settings be-
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Fig. 1. (a) Relationship between coastal surface phytoplankton biomass (g m�3) as a
phytoplankton biomass values (g m�2) used in the phytoplankton (PP) driver.
tween functional groups of organisms (e.g. bottom-up, top-down
control). We speculate that the degree of upwelling and resulting
primary productivity may similarly affect ecosystem dynamics
across seasonal, inter-annual (EN), and multi-decadal temporal
scales, but use the data-rich period of 1995–2004 as a starting
point for model exploration.
2. Methods

Using the temporal dynamic routine of Ecosim within the EwE
package (Walters et al., 1997, 2000) we explored the relative
importance of external and internal ecosystem drivers in the
Northern Humboldt Current Ecosystem from 1995 to 2004. Exter-
nal, non-trophically-mediated drivers considered were changes in
phytoplankton biomass, fishing rate (effort and mortality), and
oceanic immigrant biomass (mesopelagic fish). Internal, trophi-
cally-mediated, factors concerned an exploration of trophic flow
controls (e.g. bottom-up, top-down) that govern predator-prey
dynamics.

2.1. Description of the model

The steady-state model from Tam et al. (2008) is used here as
input describing the initial ecosystem state (1995/96 model),
which encompasses a full ‘‘biological year” (i.e. starting from about
the middle of a calendar year). The spatial domain is from 4�S to
16�S and 60 nm offshore (ca. 111 km; see Fig. 1 in Tam et al.,
2008). The models consisted of 33 functional groups including
detritus, macrobenthos, 2 phytoplankton groups, 4 zooplankton
groups, 8 pelagic fish groups, 2 cephalopod groups, 12 demersal
fish groups (including 3 life-history stages for Peruvian hake, Mer-
luccius gayi peruanus), seabirds, pinnipeds, and cetaceans. Groups
were chosen based on similar trophic connections (both to preda-
tor and prey groups), similar production and consumption rates,
and importance to fishery resources.

The simulations calculate biomass changes through time by
solving the set of differential equations:

dBi=dt ¼ gi

X
k

QkiðtÞ
" #

�
X

j

Q ijðtÞ �MOiBi �
X

Fif ðtÞBi ð1Þ

for functional groups i = 1, . . . ,n. The first sum represents the food-
consumption rate, Q, summed over prey types k of species i, and
gi represents the growth efficiency (proportion of food intake con-
verted into production). The second sum represents the predation
loss rates due to predators j of i. All Q’s in these sums are calculated
by Eq. (2), below. MOi represents the instantaneous natural mortal-
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ity rate due to outside factors other than modeled predation. The fi-
nal sum represents the instantaneous fishing mortality rate, F, as a
sum of fishing components caused by fishing fleets f.

Consumption rates (Qij) are calculated by assuming that the bio-
mass of prey i, Bi, is divided into vulnerable and safe components,
and the flux rates vij and v0ij move biomass into the vulnerable and
safe pools, respectively. This assumption leads to the rate
equation:

Q ij
aijðtÞmijðtÞBiBj

mijðtÞ þ m0ij þ aijðtÞBj
ð2Þ

where the total consumption rate Qij varies as a mass action product
(avBiBj), and is modified downward by a ‘‘ratio dependent” effect
(v + v0 + aBj) representing localized competition among predators.
aij represents the rate of effective search by predator j for prey type
i (for further information, see Walters and Martell, 2004). The vul-
nerabilities for each predator–prey interaction can be manipulated
and settings will determine if control is top-down (i.e. Lotka-Volter-
ra; v > 2.0), bottom-up (i.e., donor-driven; v < 2.0), or intermediate
(v � 2.0). The EwE software can also fit the vulnerabilities (‘‘fit-to-
time-series” routine), where the sum of squares (SS) is minimized
between observed and predicted log biomasses/catches:

SS ¼
X
½LogðBobsÞ � LogðBpred:Þ�2 ð3Þ

Simulations measured the importance of three external drivers
(see Section 2.2) on dynamics of the Northern Humboldt Current
Ecosystem from 1995 to 2004. In addition, we applied the ‘‘fit-to-
time-series” search routine within EwE to determine a best possi-
ble combination of specific predator–prey controls (see Section
2.3). The simulation’s performance was measured by SS against
available time-series data of yearly biomass and catch changes.
Time-series data were derived from biomass, catch, fisheries mor-
tality, and fishing effort estimates from IMARPE (Instituto del Mar
del Perú) and other sources (Table 1). These data were adapted to
the model area and biological year averages.

2.2. External drivers

External drivers were not accounted for within the internal
flows of the trophic model. These drivers included: (i) ‘‘PP”, phyto-
plankton biomass changes due to changes in upwelling and nutri-
ents; (ii) ‘‘F”, fishing rate changes; and (iii) ‘‘I”, Immigrant biomass
changes, specifically, the expansion and immigration of mesope-
lagic fish into the model area. Drivers were introduced successively
in all sequences and combinations in order to arrive to an average
value of change in SS (n = 15). External driverś dynamics were de-
fined by available or reconstructed long-term data series as de-
scribed below.

Phytoplankton, PP – Long-term estimates of total phytoplankton
biomass are available as total surface chlorophyll a (mg m�3) from
the SeaWifs satellite. We however needed to divide this total into
the small- and large-sized phytoplankton functional groups, and
did so by predicting functional group biomass from temperature
anomaly, as below. We used a 1992–2000 time-series of coastal
phytoplankton sampled by the Universidad Nacional Mayor de
San Marcos (Lima, Peru) in Bahía de Ancón (77 390 W–11 120 S),
Central Peru. The series consisted of cell counts of surface phyto-
plankton species, which were then converted to biovolume using
cell dimensions gathered from literature sources or measured by
microscopy. Cell dimensions were applied to geometric-shape
assignments as described by Sun and Liu (2003) for the calculation
of biovolume. Monthly average biovolume by taxonomic group
were plotted against temperature anomalies off Ancón. Biovolume
was natural log transformed and yielded the following linear
relationships:
LNðBÞ ¼ 17:841� 0:2184 � Tanom:

ðDiatoms; r ¼ �0:20; p ¼ 0:05Þ ð4Þ

LNðBÞ ¼ 16:603þ 0:1719 � Tanom:

ðDino- and silicoflagellates; r ¼ 0:14; p ¼ 0:18Þ ð5Þ

where B = biovolume (lm3 50 ml�1), Tanom. = temperature anomaly
(�C). Typical of phytoplankton populations, a wide distribution of
values was observed; however, diatom biovolume showed a nega-
tive trend and dino- and silicoflagellates a positive one, which is
consistent with literature concerning the effects of ENSO on phyto-
plankton communities (Fig. 1a). These relationships were then ap-
plied to an index of integrated temperature anomalies for the
entire Peruvian coast – the Peruvian Oscillation Index (POI) (Purca,
2005), which allowed for the reconstruction of coastal phytoplank-
ton biovolumes for the years 1995–2003. Despite a non-significant
correlation for dino- and silicoflagellates, the temperature-based
predictions produce an acceptable range of surface phytoplankton
biovolume when compared to the SeaWIFs data. For the simulations
we use converted the temperature-based proportions of the two
phytoplankton fractions to absolute values with the SeaWifs data
for the model domain. Conversion factors used for chlorophyll a
(Chl a) to wet weight were as follows: Chl a:Carbon (40:1) (Brush
et al., 2002), and Carbon:wet weight (14.25:1) (Brown et al.,
1991). Finally, a uniform mixed layer depth of 40 m was assumed
to arrive at units of biomass per m2 as described by Tam et al.
(2008) (Fig. 1b).

Fishing rate, F – Time-series fishing rate estimates were only
available for anchovy, hake and jumbo squid; however, these spe-
cies represent key fisheries as well as important functional groups
in the nearshore pelagic, nearshore demersal, and offshore pelagic
ecosystems, respectively. These include fishing mortality rates de-
rived from single species Virtual Population Analyses for anchovy
and the three hake functional groups, and changes in fishing effort
for jumbo squid (Table 2).

Immigration, I – While biomasses of several oceanic-associated
functional groups apparently increased during EN (Tam et al.,
2008), long-term data is only available for the mesopelagics func-
tional group – lightfish and lanternfish – as determined by IMARPE
acoustic surveys. Distribution of mesopelagics extends far offshore
and thus we only considered the portion of the group in the model
area. Mesopelagic’s biomass increased in the model area following
EN, apparently due to immigration; these changes were simulated
by forcing mesopelagic biomass as an external driver.
2.3. Internal control

Model settings of prey vulnerability determine whether top-
down bottom-up ecosystem dynamics dominate. ‘‘Mixed” or inter-
mediate (MX; default v = 2.0) settings were used for initial explora-
tions of the influence of external drivers. Afterwards, a further fit-
to-time-series search routine was run for the 30 most sensitive
predator–prey interactions (as determined by a sensitivity routine
of the program) to reduce SS. The following interactions were also
included to assess whether ‘‘wasp-waist” ecosystem control occurs
around sardine and anchovy: (i) meso- and macrozooplankton as
prey of sardine and anchovy; and (ii) all interactions where ancho-
vy and sardine are prey. In total, 49 interactions were included in
the search routine.

2.4. Focus on changes in main fishing targets

The dynamics of several main fishing targets and their
interactions were also highlighted. Simulated mortality and diet
changes for anchovy were examined in detail to help interpret



Table 1
Annual time-series data sets used in the Ecosim simulations.

Functional group Data set Comments Used to
force
dynamics

Used to measure
fit of simulation

1. Diatoms Biomass (B) SeaWifs; phytoplankton proportions reconstructed (see Section 2.3) + +
2. Dino- and silicoflagellates Biomass (B) SeaWifs; phytoplankton proportions reconstructed (see Section 2.3) + +
4. Mesozooplankton 200–

2000 lm esd.
Biomass (B) IMARPE survey (Ayón, personal communication) – corrected using seasonal

anomalies (1959–2001)
+

7. Macrobenthos Biomass (B) IMARPE benthic survey (1995–2003) (Gutierrez and Quipuzcoa, personal
communication)

+

8. Sardine – Sardinops sagax Biomass (B) IMARPE acoustic survey (1995–1999) (Gutierrez, personal communication) +
Catches (C) Sea Around Us database (2006) (1995–2002) +

9. Anchovy – Engraulis
ringens

Biomass (B) VPA estimates (1995–2003) (Niquen, personal communication) +
Fishing
mortality (F) VPA estimates (1995–2003) +
Catches (C) IMARPE catch statistics (1995–2003) +

10. Mesopelagics – Lightfish
and Lanternfish

Biomass (B) IMARPE acoustic survey (1999–2003) (Gutierrez, personal communication) + +

11. Jumbo squid – Dosidicus
gigas

Biomass (B) IMARPE acoustic survey (1999–2003) (Arguelles, pers. comm.); 1995–1998
reconstructed from CPUE:acoustic ratio from 1999 to 2003

+

Fishing
effort (E)

Korean and Japanese industrial fleet data (1995–2003) +

Catches (C) Korean and Japanese industrial fleet data (1995–2003) +
12. Other Cephalopods Catches (C) IMARPE catch statistics (1995–1999) +
13. Other small pelagics –

e.g. juvenile demersal
fish

Catches (C) Sea Around Us database (2006) – Engraulidae, Ethmidium maculatum
(1995–2002)

+

14. Horse mackerel –
Trachurus murphyi

Biomass (B) IMARPE acoustic survey (1995–2003) (Gutierrez, personal communication) +

15. Characteristic large
pelagic – Scomber
japonicus

Biomass (B) IMARPE acoustic survey (1995–2003) (Gutierrez, personal communication) +

16. Other large pelagics Catches (C) IMARPE catch statistics (1995–1999) +
17. Small hake – Merluccius

gayi peruanus (<29 cm)
Biomass (B) VPA estimates (1995–2003) (Wosnitza-Mendo, personal communication) +
Fishing +
mortality (F) VPA estimates (1995–2003) +
Catches (C) IMARPE catch statistics (1995–2003)

18. Med. hake – Merluccius
gayi peruanus (30–
49 cm)

Biomass (B) VPA estimates (1995–2003) (Wosnitza-Mendo, personal communication) +
Fishing
mortality (F) VPA estimates (1995–2003) +
Catches (C) IMARPE catch statistics (1995–2003) +

19. Large hake – Merluccius
gayi peruanus (>50 cm)

Biomass (B) VPA estimates (1995–2003) (Wosnitza-Mendo, personal communication) +
Fishing
mortality (F) VPA estimates (1995–2003) +
Catches (C) IMARPE catch statistics (1995–2003) +

21. Small demersals Catches (C) IMARPE catch statistics (1995–1999) +
22. Benthic elasmobranchs Catches (C) IMARPE catch statistics (1995–1999) +
25. Medium demersal fish Catches (C) IMARPE catch statistics (1995–1999) +
26. Medium sciaenids Catches (C) IMARPE catch statistics (1995–1999) +
28. Catfish Catches (C) IMARPE catch statistics (1995–2002) +
29. Chondrichthyans Catches (C) IMARPE catch statistics (1995–1999) +
30. Seabirds Biomass (B) IMARPE survey (1995–2003) (Goya, personal communication) +
31. Pinnipeds Biomass (B) IMARPE survey (1995–2003) (Goya, personal communication) +
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sources of bottom-up and top-down dynamics. Hake were also
of special interest due to the drastic decreases in population size
that followed the last strong EN (Guevara-Carrasco, 2004; Ballón
et al., 2008). We specifically looked at mortality of the small size
class to help interpret possible sources influencing the low
recruitment.

3. Results

3.1. External drivers

The driver to phytoplankton biomass and composition im-
proved the overall fit of the simulation, reducing SS by 2.7%
(Fig. 2b) with greatest improvement during EN and the subsequent
3 year period (Fig. 2a). The driver to immigrant biomass (mesopel-
agics) reduced SS by 9.2% (Fig. 2b) with the greatest improvement
in later years when biomasses were highest (Fig. 2a). SS for the EN
year 1997–98 alone was not improved by the immigrant driver
(Fig. 2a). Fishing rate changes proved to be the most important
of the three external drivers overall, reducing SS by 22.0%
(Fig. 2b). Improvements were observed throughout the simulated
period except for the final year, and were generally more impor-
tant during the post-EN years (Fig. 2a).

3.2. Best-fit vulnerabilities

The fit-to-time-series search for vulnerabilities revealed several
important predator-prey interactions (Table 2), and further de-
creased SS by 31.2% after the application of the three internal driv-
ers PP, F, and I (total decrease in SS of 64.3%). The results did not
support a wasp-waist configuration for small pelagics (agrees with
Ayón et al., 2008), as bottom-up configurations were estimated for
sardines and anchovy on meso- and macrozooplankton; however,
a bottom-up configuration was fit for interactions of sardine and
anchovy, and their predators. Top-down control of macrozooplank-
ton by mesopelagics and large hake was also suggested. The



Table 2
Predator–prey vulnerabilities searched in the fit-to-time-series routine (in bold); BU = bottom-up; MX = mixed/intermediate (default setting); TD = top-down.

Predator/prey Diatoms Silico- and
Dinoflagellates

Microzooplankton Mesozooplankton Macrozooplankton Sardine Anchovy Mesopelagics Jumbo
squid

Other
small
pelagics

Small
hake

Small
demersals

Conger Med.
sciaenids

P.
stephanophrys

Mesozooplankton 1 (BU) 2 (MX) 2 (MX)
Macrozooplankton 1E+10

(TD)
1 (BU) 1E+10 (TD)

Sardine 2 (MX) 2 (MX) 2 (MX) 1 (BU) 1 (BU)
Anchovy 1E+10

(TD)
2 (MX) 2 (MX) 1 (BU) 1.16 (BU)

Mesopelagics 2 (MX) 1E+10 (TD)
Jumbo squid 2 (MX) 2 (MX) 1 (BU) 1 (BU) 1E+10

(TD)
2 (MX) 1E+10

(TD)
Other

Cephalopods
1 (BU) 2 (MX)

Horse mackerel 2 (MX) 1 (BU) 2 (MX) 2 (MX)
Mackerel 2 (MX) 2 (MX) 2 (MX) 1.55 (BU) 2 (MX) 2 (MX)
Other large

pelagics
1 (BU) 2 (MX) 2 (MX) 2 (MX)

Small hake 2 (MX) 1 (BU) 1 (BU) 1 (BU) 2 (MX) 2 (MX) 1E+10 (TD)
Med. Hake 2 (MX) 1.16

(BU)
1E+10
(TD)

1E+10
(TD)

1.31 (BU)

Large hake 1E+10 (TD) 1 (BU) 1.02 (BU) 1E+10
(TD)

1.43 (BU) 1 (BU) 1E+10
(TD)

1E+10 (TD)

Flatfish 1 (BU)
Small demersals 1E+10

(TD)
1E+10 (TD)

B. elasmobranchs 2 (MX) 1 (BU) 1 (BU) 2 (MX) 2 (MX) 2 (MX) 2 (MX) 2 (MX)
Conger 2 (MX) 1E+10 (TD)
Med. demersal

fish
2 (MX) 1 (BU) 2 (MX) 2 (MX)

Med. sciaenids 2 (MX) 1 (BU) 1 (BU) 2 (MX) 2 (MX) 2 (MX) 2 (MX) 2 (MX)
P. stephanophrys 1 (BU)
Catfish 2 (MX) 2 (MX) 1 (BU) 2 (MX)
Chondrichthyans 1 (BU) 2 (MX) 2 (MX)
Seabirds 1 (BU) 2 (MX) 2 (MX)
Pinnipeds 1 (BU) 2 (MX) 2 (MX) 2 (MX) 2 (MX) 2 (MX)
Cetaceans 2 (MX) 1 (BU) 2 (MX)
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control of mesopelagic fish to its main predator, jumbo squid, was
1.0 (bottom-up), helping to explain the increase of squid biomass
following the EN of 1997–98. The final time-series trends of the
simulation versus the base data is shown in Fig. 3 for biomass
and Fig. 4 for catch data.

3.3. Focus on main fishing targets

Anchovy changes during EN were best explained through bot-
tom-up diatom and zooplankton availability, while later changes
were more attributable to the fishery. Reduction in diatoms during
EN resulted in a higher contribution of zooplankton in the anchovy
diet. Dino- and silicoflagellate increases were unimportant as this
group contributes only a small proportion to their diet generally
(Fig. 5). During EN, modeled predation on anchovy increased –
mainly due to horse mackerel – but non-predatory mortality was
far stronger (Fig. 6) and seems due to low feeding rates and de-
creased prey availability. After EN, mortality rates were mainly
controlled by fishing.

Decreases in the hake biomasses were well predicted by the
simulation for all three size classes (Fig. 3). Mortalities for small
juvenile hake indicate that cannibalism did not contribute greatly
to the overall mortality even during the pre-crash years of 1995–
96 and 1996–97 when adult biomass was higher. Modeled preda-
tion of small hake by jumbo squid remains fairly constant despite
the squid increases. Squid predation does, however, represent a
higher proportion of total hake mortality in the last simulation
year following reduction of the hake fishery. Fishing is the most
substantial source of mortality for all three hake groups, especially
for medium and large hake (Fig. 7).

The immigrant driver simulated the immigration of mesope-
lagic fish into the model domain. One result is the increase in jum-
bo squid biomass and a shift in the jumbo squid’s diet toward a
larger proportion of mesopelagic fish (Fig. 8). Small hake, however,
contributed minimally to the squid diet.

4. Discussion

We use the model for the 1995–96 year as a starting point for
several reasons: (i) reliable, periodic sampling conducted by IMA-
RPE began in 1995; (ii) 1995–96 was a fairly typical, ‘‘normal”
upwelling year, several years after the recovery of anchovy; and
(iii) 1995–96 preceded the strong EN of 1997–98, offering insight
into subsequent dynamics. We asked the question whether this
EN event has been a principal perturbation over 1995–2004 and
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to what degree trophic interactions played a role in the observed
ecosystem changes.

4.1. Role of external drivers

Phytoplankton – Given the major decrease in primary produc-
tion that occurs during EN, it was assumed that the application
of this driver would have a major bottom-up impact through the
trophic web, and would partially explain the decreased biomass
of the coastal ecosystem as a whole. In fact, externally driving phy-
toplankton downwards did improve the fit of the simulation, espe-
cially during EN and the immediately following 3 years. Later years
show a reduced importance of the forced phytoplankton changes,
likely due to less yearly phytoplankton variability under the more
‘‘normal” upwelling conditions (Fig. 1b).

Copepods make up the majority of the mesozooplankton bio-
mass in Peru and are known to be important grazers of the larger
microphytoplankton (DeMott, 1989; Sommer et al., 2002, 2005).
The model correctly predicts a decrease in mesozooplankton bio-
mass in response to the decreased diatom biomass of 1997–98.
Contrary to the sampled changes of mesozooplankton, a rapid
recovery is predicted by the model following the resumed higher
diatom and total phytoplankton biomass (Fig. 3). Without specu-
lating too much as to the reasons for this discrepancy, we believe
that much additional work is required in the modeling of zoo-
plankton. Still, the model predicts at least the correct direction of
change for many higher trophic groups, and in some cases predicts
change of the correct magnitude as the base data. This is especially
true of the trophically-important anchovy dynamics for which data
is more widely available.

Of particular importance to small pelagic dynamics are particle
size feeding preferences observed for the different species. Sar-
dines possess fine-meshed gillrakers suitable for filtering smal-
ler-sized particles. Anchovy, on the other hand, are more
specialized and efficient at feeding on larger-sized particles (James
and Findlay, 1989; van der Lingen, 1994; van der Lingen et al.,
2006). The result of these adaptations, at least in the Benguelan
populations, is that anchovy seem to have higher clearance rates
(per weight) than sardine when available particles are larger than
about 500–600 lm (van der Lingen, 1994). These feeding differ-
ences have been dealt with in other trophic models by defining
separate zooplankton compartments by size, and through different
vulnerabilities to grazing by small pelagics (Heymans and Baird,
2000; Shannon et al., 2003; Neira and Arancibia, 2004; Shannon
et al., 2004a,b). We have further divided phytoplankton into two
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taxonomic groups for a similar reason. According to the biovolume
conversions of diet data conducted for our initial steady-state
model (Tam et al., 2008) and other authors (Alamo, 1989; Espinoza
and Blaskovic, 2000) anchovy feed more on diatoms than flagel-
lates. Although diatoms are more associated with the nearshore
cold habitat of the anchovy, they are usually smaller than the cited
500–600 lm optimal particle size; however, it seems likely that
aggregates and cell-chains allow anchovies to filter even fairly
small diatoms. As a result, anchovy dynamics are well simulated.
The initial decrease in anchovy biomass during 1997–98 is mainly
reproduced by forcing phytoplankton abundance downwards; spe-
cifically, a decrease in diatom biomass and, subsequently, a de-
crease in the second most important food item, mesozooplankton.

The modeled switch to an anchovy diet dominated by zooplank-
ton was not as complete as was observed from in situ samples
(Espinoza and Bertrand, 2008; Tam et al., 2008) (Fig. 5), possibly
due to: (i) forced biomass decreases of phytoplankton may not
have reduced diatoms as dramatically as in reality; (ii) anchovy
move closer to the coast and deeper (up to 150 m) during EN (Ber-
trand et al., 2004), which may be due to non-trophic reasons (e.g.
physiological stress associated with the higher surface water tem-
peratures), and possibly prevent feeding upon the remaining dia-
tom biomass; (iii) The modeled starting diet may have been too
high (or not) in diatoms, although this cannot explain the lack of
change in diet composition as this is calculated mainly from the
changes in biomass and vulnerability. Espinoza and Bertrand
(2008) have estimated the percent contribution of phytoplankton
in carbon units to anchovy diet from stomach contents. Their re-
sults indicate that mesozooplankton and macrozooplankton com-
prise as much as 98% of carbon intake. Although their diet data
still needs to be weighted according to the distribution of the an-
chovy population, it may indicate that our model overestimates
the importance of phytoplankton as anchovy prey.

Fishing rates – The application of fishing as an external driver
improved the fit of the simulation and helps to explain the long-
term dynamics of several main target species. The fishing driver
decreased long-term variance by 22%, as compared to a 2–3% de-
crease in a similar study for the Southern Benguela (Shannon
et al., 2004a). This very large difference suggests strong fishery
impact on the Peruvian system. In a comparison of trophic mod-
els, Moloney et al. (2005) illustrated that the South Benguelan
fishery operates on a higher trophic level than in other EBCSs
due to the differing diet of small pelagics and composition of
the catch; specifically, Benguela small pelagics eat more zoo-
plankton and fishery catches contain more demersal fish. The
differences result in a higher mean trophic level of the catch
in the Southern Benguela, elevating the statistic of Flows required
per unit of catch ([t 1�prod] [t catch]�1 km�2 y�1) and indicating
that the same tonnage catch requires more energetic input from
the ecosystem. Despite this cost, the authors determined that the
Southern Benguelan fishery required a smaller proportion of to-
tal primary production to sustain it when compared to the Peru-
vian fishery (4% vs. 10%), reflecting the much higher fishing rates
in the Peruvian system.
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The simulation output calculates mortality rates through time,
allowing for the determination of the importance of yearly fishing
mortality changes for some key target groups’ dynamics as dis-
cussed in the following sections. For anchovy, fishing mortality
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(F) values are much more variable than mortality from predation
(Fig. 7). In 1996–97, before the onset of EN, VPA-derived F values
more than doubled. This is consistent with past EN events whereby
during the first phase of the EN stocks concentrate inshore,
increasing their density and catchability (Csirke, 1989), whereas la-
ter, during the height of EN and possibly coinciding with the brunt
of the arriving Kelvin wave, anchovy stocks are further driven in-
shore and/or to greater depths (Icochea, 1989; Bertrand et al.,
2004). Anchovy had moved closer to the coast and to deeper
waters (up to 150 m), which prevented large industrial purse sein-
ing (Arntz and Fahrbach, 1991; Bertrand et al., 2004). As the F val-
ues used are based on a biological year (July–June), the 1996–97
value is influenced by the onset of EN. Positive temperature anom-
alies for the Peruvian coast were noted as early as March 1997 and
more than 2.8 million tonnes were landed during April and May
alone. Shortly after these impressive catches, the anchovy fishery
was essentially closed until the end of 1998, such that F was near
zero during EN. Dynamics of the anchovy population in the later
years of the simulation show both fishery and predation mortali-
ties elevated as fishing began again and some predators recovered,
causing some drop in anchovy biomass over 2000–2003 (Fig. 6).

According to the VPA analysis conducted by IMARPE, hake bio-
mass was very high between 1993 and 96 – levels not seen since
the late 1970s – however these levels declined dramatically after
the EN of 1997–98 and have remained alarmingly low for the past
decade. As a result, the hake fishery closed in September 2002 and
now operates at a much smaller scale. Several hypotheses have
been offered to explain the crash: (i) low recruitment-success
due to cannibalism of juveniles by adult hake (Ballón, 2005), (ii) in-
creased predation pressure on small hake due to the immigration/
expansion of jumbo squid, (iii) overfishing (Wosnitza-Mendo et al.,
2005), and (iv) demersal community changes affecting the prey of
hake (Ballón, 2005). The simulated mortalities for small juvenile
hake suggests that cannibalism does not contribute much to
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mortality even when adult hake were abundant (1995–97; Fig. 7).
Hake fishing mortality, however, increased before EN and re-
mained at high levels for all three hake size groups until the fishery
closure in 2002. These increases in F over the EN period, in contrast
to previous ENs during which F generally decreases, were likely
due to improved fishing techniques and movement of the trawl
fleet southwards in pursuit of hake (Wosnitza-Mendo et al.,
2005). The model suggests further mortality occurred due to de-
creases in prey abundance, especially for medium and large hake.
This result is supported by Ballón et al. (2008), who found for
1972–2004 that gonadosomatic and stomach fullness indices de-
creased with EN-associated positive temperature anomalies,
implying food-limited somatic production. The simulation predicts
biomass gains for all three hake groups during 2003–04 due to re-
duced fishing mortality after 2001; however, hake did not recover
in reality (Fig. 3). Ballón et al. (2008) offer a non-trophic explana-
tion – reproductive failure. They observed that while large hake
(>35 cm) show high condition and stomach fullness indices during
the 2000s, gonadosomatic indices have decreased since the mid
1980s. Additionally, sex ratios have shifted toward females (reach-
ing almost 100% for fish larger than 35 cm), leading the authors to
hypothesize that long-term fishing pressure from the fishery may
have disproportionately depleted males (males comprised 80% of
the catches during the 1980s) to the point where females now lack
a sufficient number of males to stimulate reproduction. Such a
dependence on males to induce spawning is typical in cod-like spe-
cies (Rowe and Hutchings, 2003). Nevertheless, our simulation
supports the results of the VPA: Increases in F explain the sharp de-
cline in hake abundance observed from 1997 to 2002. When com-
pared to the baseline natural mortality value (M = 0.38) used in the
VPA, total mortality values (Z) sum to extremely high levels (above
2.0) for medium and large hake groups, mainly driven by F, and
illustrate the pressure put on the group during the post-EN period.

Time-series data on fishing rates existed for only three species
at the time of this study (anchovy, hake, and jumbo squid). There-
fore, simulation results concerning the importance of the fisheries
on system dynamics may be somewhat conservative and future
simulations may observe an even greater importance by incorpo-
rating additional fisheries.
Immigration – The offshore border of the model domain was set
at 60 nm (ca. 111 km), which is approximately the mean width of
the continental shelf. Previous model domains for the Peruvian
upwelling system (Jarre et al., 1991) were narrower due to focus
on the nearshore habitat of anchovy. Our wider domain allowed
incorporation of the ‘‘active zone” or productive upwelling system
(Nixon and Thomas, 2001). Our latitudinal range (4–16�S) similarly
encompassed the main upwelling region delimited by the equato-
rial current to the north and a zone of decreased offshore Ekman
transport further to the south. This latitudinal extension also corre-
sponds to the main distribution of the northern Humboldt sardine
and anchovy stocks (Alheit and Ñiquen, 2004). Despite this care to
account for variability of principal functional groups, several less
coastal species migrate into the model area, especially during peri-
ods of reduced upwelling and subsequent habitat reduction associ-
ated with EN. Sardine and mackerels, for example, remain offshore
in oceanic water during the strong upwelling of La Niña (Bertrand
et al., 2004); and it has been hypothesized that physiological re-
straints may also limit their distribution (Jarre et al., 1991). These
non-trophic effects may help to explain why some more oceanic
groups’ dynamics are not well predicted by the model, and thus
may require additional external forcing in future simulations.

The immigration of mesopelagic fish during EN does not appear
to have been a significant factor for the decreased biomass of more
coastal species during the EN 1997–98. However, their longer-term
growth does appear to impact some more coastal groups in later
years of the simulation when their mesopelagic biomass was high-
est. While the cause of the mesopelagic fish outburst is not known,
we speculate that either (i) the euphausiids biomass increased dur-
ing EN in response to decreased grazing competition with meso-
zooplankton, and/or (ii) the deepened thermocline during EN
may have increased the vulnerability of euphausiids – a principal
prey for mesopelagic fish – allowing for an increase in predation
by mesopelagic fish. Given euphausiids’ strategy of predation
avoidance through diel vertical migrations across the Oxygen Min-
imum Layer (OML, <1.0 ml L�1) (Antezana, 2002), it is possible that
a deepening of the upper boundary of the OML may have caused
increased vulnerability to predation. In any case, this increase in
mesopelagic fish biomass during and after the EN helps to explain
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the decreases in biomass of both mackerel groups through compe-
tition for macrozooplankton, a main prey for all three.

Another link with the mesopelagic fish expansion is the bot-
tom-up response of the key predator, jumbo squid. This has had
some benefits in Peru through the sale of fishing permits to foreign
offshore Japanese and Korean jigging vessels as well as becoming
an important target species for the nearshore artisanal fisheries.
Despite this, the fear of negative effects of the jumbo squid out-
burst on the more valuable hake population has caused alarm.
The results of this study indicate that while some competitive ef-
fects do occur between jumbo squid and hake, the high fishing
rates appear to have more responsibility in the hake’s decline.
While the direct predation mortality rates on small hake by jumbo
squid appear relatively stable in the simulation, is should be noted
that it is proportionally larger in the later years possibly due to
groups’ lower total mortality (Fig. 7).

4.2. Internal control mechanisms

The dramatic improvement in SS (31.2%) after the fit-to time-
series routine highlights the importance of trophic control to inter-
nal dynamics of the ecosystem. Shannon et al. (2004a) also found
that fitting of internal dynamics improved the simulation in the
Southern Benguela by 40%. Our shorter time-series makes for a less
robust analysis; however, we will focus on the most important and
interpretable interactions.

One of the more significant results of the vulnerability fitting
exploration was that a wasp-waist configuration around small pel-
agics, typical for other EBCSs, is not supported for the Peruvian sys-
tem. Cury et al. (2000) found a negative relationship between
yearly zooplankton concentrations and small pelagic landings for
several upwelling systems (California, Ghana and Ivory Coast,
Oyashio (Japan), Black Sea, Southern Benguela) and hypothesized
that zooplankton biomass is top-down controlled by pelagic fish.
Shannon et al., (2004a), Shannon et al., (2004b) further supported
a wasp-waist configuration surrounding small pelagics in the
Southern Benguela system. On the other hand, Cury et al. (2000)
mentioned that the Peruvian system was one of the few exceptions
where zooplankton concentrations and small pelagic landings
were positively correlated; specifically, lower zooplankton concen-
trations (mainly mesozooplankton is sampled) were observed off
Peru during the mid 1970s to mid 1980s, coinciding with the per-
iod after the anchovy collapse. Zooplankton concentrations have
since increased with the recovery of anchovy, but remain lower
than the concentrations of the 1960s and early 1970s (Ayón
et al., 2004). For the shorter time-series modeled here, we also
found a bottom-up relationship between mesozooplankton and
the predators – anchovy and sardine (agrees with Ayón et al. 2008).

It has been proposed that Peru’s proximity to the equator allows
for optimal conditions for upwelling and fish production (Cury and
Roy, 1989; Bakun, 1996), by allowing plankton communities to be-
come particularly rich above the stable and relatively shallow ther-
mocline. Furthermore, the shallow oxygen minimum may
concentrate plankton above it, thus improving the grazing effi-
ciency of small pelagic fish. We have demonstrated the importance
of diatoms in the dynamics the Humboldt Current System, yet to
the best of our knowledge a comparison of phytoplankton compo-
sition (i.e. based on cell size, taxa, unicellular vs. chain-forming,
etc.) between EBCSs is lacking, thus preventing speculation if dif-
ferences in phytoplankton composition exist. Highly concentrated
plankton in Peru would not necessarily explain why zooplankton
and small pelagics would both benefit simultaneously during peri-
ods of high upwelling. In fact, highly concentrated plankton might
make top-down grazing pressure even more pronounced due to
more efficient filter-feeding by anchovy. This possibility is sup-
ported by Ayón et al. (2008) through evidence of top-down control
on smaller scales in Peru, wherein zooplankton biovolume is lower
where anchovy and sardine biomass is high (acoustically deter-
mined, within a 5 km radius of the zooplankton sample). This find-
ing is contrary to the negative correlation between large-scale
trends of zooplankton volumes versus small pelagic fish biomass
(Cury et al., 2000); however, Ayón et al. mention the importance
of scale in explaining this discrepancy.

Cury et al. (2000) found negative relationships between zoo-
plankton and small pelagics abundances in several upwelling sys-
tems (Ghana and Ivory Coast; Southern Benguela; Oyashio, Japan),
yet the finding may be in part due to sampling bias, as zooplankton
time-series tend to be based on samples restricted to the continen-
tal shelf. Where zooplankton over a larger extension from the coast
and with evenly spaced sampling stations (California), no signifi-
cant correlation to small pelagic catches is found. Similarly, zoo-
plankton sampling conducted by IMARPE is fairly uniform and
extends to ca. 185 km (100 nm) from the coast. This does not elim-
inate the possibility of wasp-waist forcing in Peru, but it does im-
ply that it may occur only on smaller scales than our model
domain.

Bottom-up configurations were found between sardine and an-
chovy to all their higher predator groups. In particular, the de-
creases in anchovy biomass associated with EN contributed to
the decreases in several predatory groups, especially horse mack-
erel and small hake. Over longer time scales (i.e. decadal), both of
these fish species show flexibility in their diets, especially during
periods of low anchovy biomass (mid 1970s to late 1980s) – horse
mackerel shift to zooplankton (Muck, 1989) and hake shift to sar-
dine (Castillo et al., 1989). The shorter simulation period of this
study appears to capture the reduction in system size due to
the reduced upwelling during EN. As a result, most functional
groups of the coastal environment experience reductions in bio-
mass, which may differ from dynamics on decadal time scales
such as a regime change. Generally, our results support previous
studies presented in Pauly and Tsukayama (1987a), where tele-
osts, especially horse mackerel, are far more important consumers
of anchovy than guano birds and pinnipeds; however acoustic
surveys show that teleost spatial overlap with anchovy appears
to have decreased significantly since 1997 (A. Bertrand, personal
communication).

A more probable bottom-up relationship is that between ancho-
vy and seabirds and pinnipeds, whose distributions strongly over-
lap with anchovy habitat. Even with a forced bottom-up
configuration to anchovy, the model did not reproduce the large
decreases in seabirds and pinnipeds that were observed following
EN. We believe that a reduction in anchovy vulnerability may ex-
plain such a result. Muck and Pauly (1987) first proposed that
seabirds are probably more affected by changes in vulnerability
resulting from sea surface temperature-mediated distribution
changes of anchovy than by changes in anchovy biomass. As men-
tioned earlier, not only did anchovy retreat to remaining centers of
upwelling during EN (Alheit and Ñiquen, 2004), but also moved
deeper (up to 150 m) with the thermocline (Bertrand et al.,
2004). We believe that this movement made them less vulnerable
to these predators. This is well illustrated in a diagram presented
by Jarre et al. (1991) whereby changes in the vertical distribution
of anchovy affect their vulnerability to predation or capture from
seabirds, pinnipeds, and purse seiners. Diving seabirds are special-
ists on anchovy and have the shallowest effective hunting depth,
and so would become the most susceptible to changes in the an-
chovy’s vertical distribution.

Other important internal controls are observed with the more
oceanic-associated functional groups. The expansion / immigration
of mesopelagic fish into the model area impacted several groups
directly, including possible top-down forcing of macrozooplankton
and bottom-up forcing to jumbo squid. As mentioned before, this
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result must be taken with caution given that the diet of mesope-
lagic fish was not based on in situ measurements during the model
period; however, the inclusion of several interactions involving
macrozooplankton as prey in the vulnerability fitting routine sug-
gests that their dynamics may be of more importance than previ-
ously thought. In particular, a top-down configuration between
mesopelagics and macrozooplankton helped to explain decreases
in macrozooplankton biomass, and subsequent decreases in sev-
eral competitors for macrozooplankton (other cephalopods, mack-
erel, horse mackerel). While these groups’ are more oceanic, they
nevertheless have connections to the coastal zone. Mackerels are
known to come closer to the coast both seasonally and during EN
in response to decreased upwelling, where they may impact an-
chovy and other coastal species. Jumbo squid and other cephalo-
pods also occur across the shelf. Cephalopods populations are
subject to dramatic fluctuations and their impact on prey popula-
tions is equally variable. Their role as predators on fish and crusta-
ceans clearly implicates them as a factor influencing natural
mortality and recruitment-success in stocks of commercial
exploited species (Rodhouse and Nigmatullin, 1996).

4.3. Conclusions and future prospects

The introduction of external drivers has allowed us to repro-
duce several key dynamics of the Northern Humboldt Current Eco-
system. Changes in phytoplankton associated with ENSO are
important on the short-term while fishing rates and immigration
from outside the upwelling region are important dynamics in the
long-term. This has helped to elucidate that the dynamics of the
Humboldt Current Ecosystem associated with the impact of an El
Niño event appear to be relatively restricted to the immediate
years following the event, and that once normalization returns,
the management of fishing rates will be increasingly important.
The separation of principal phytoplankton taxa allows for the sim-
ulation of important changes of energy flow in the Northern Hum-
boldt Current Ecosystem over several temporal scales.
Additionally, a link between the dynamics of the phytoplankton
components and more easily observable environmental parame-
ters, i.e. SST anomalies, takes a first step in the development of pre-
dictive models forced in real time.

A larger offshore extension allowed for the incorporation of
important interactions between the coastal and more oceanic com-
ponents of the ecosystem. Nevertheless, artificial forcing of meso-
pelagic fish was still necessary in reproducing the dynamics of the
more oceanic-associated groups. Further investigation into the
underlying drivers of the offshore ecosystem may become increas-
ingly important in describing the dynamics of the more economi-
cally-important coastal upwelling system.

Internal control settings showed a mix of interactions; however
a ‘‘wasp-waist” configuration around small pelagic fish is not sup-
ported. Specifically, top-down forcing of meso- and macrozoo-
plankton by small pelagic fish is not observed.

Additional non-trophic interactions may also play important
roles in dynamics (e.g. changes in vulnerability, recruitment, phys-
iological constraints), and must be considered in future modeling
efforts. We have highlighted possibilities of these in cases where
the model fails to reproduce the historical trends. This has been
an unexpected but extremely positive outcome of the two parts
of this work, and has helped to formulate further questions and
investigation foci for the future.

Finally, future prospects for trophic modeling include the adap-
tation of longer reconstructed time-series by Pauly and Tsukayama
(1987b), Pauly et al. (1989) and Guenette et al. (this issue) to the
model in order to explore dynamics since the development of the
industrial fishery around the 1950s. This would create a more ro-
bust analysis by which to further tune the internal forcing controls
of the model, including the larger-scale dynamics of a regime shift.
Ultimately, this will allow for further exploration of fishing scenar-
ios for improved management of the ecosystem.
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